

Cherry: Sound Localization for the Deaf
or Hard-of-hearing

Abstract
Deaf people by definition are people who do not hear
well and cannot rely on their hearing abilities to interact
with the environment. Unlike hearing people, they
generally need to be made aware of the events
occurring in their environment, such as a fire, someone
trying to call them by phone or in person, a child
crying, an approaching car, and so on, in their homes
or workplaces. A significant amount of research efforts
in assistive technology have explored these contexts for
deaf people, looking for specific solutions. This project
intends to build a system that is able to provide deaf
people with subtle alarms of the events taking place in
their environments, while they are in a mobile context.

Author Keywords
Sound capturing; sound processing; sound localization;
sound visualization.

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g.,
HCI): Miscellaneous.

Introduction
The human brain is highly perspicacious when it comes
to hearing – the cocktail party effect being the perfect

Aishwarya Singh
Rochester Institute of Technology
Rochester, NY 14623, USA
axs1739@rit.edu

Alan Lambie
Rochester Institute of Technology
Rochester, NY 14623, USA
ajl5088@rit.edu

Hrishikesh Karale
Rochester Institute of Technology
Rochester, NY 14623, USA
hhk9433@rit.edu

Piyush Chauhan
Rochester Institute of Technology
Rochester, NY 14623, USA
pc8504@rit.edu

Tanmay Mahesh Songade
Rochester Institute of Technology
Rochester, NY 14623, USA
tms6649@rit.edu

example of this, wherein a hearing person is able to
focus their attention on a particular auditory stimulus
while straining out the rest. This project seeks to
contribute to the deaf and hard-of-hearing people, by
creating a system which is able to replicate a virtual
cocktail party effect of sorts.

Our prototype attempts to develop a system, which
while relying on sound, would detect different events
occurring in the environment. It intends to augment the
awareness of deaf people with visualization techniques,
providing them with enough information to be able to
act and react to the events. Using a set of 3
microphones, arranged in order, to cover the left, right
and back surrounding areas with respect to a user’s
current position, the system would be able to capture
significant changes in the sound composition of the
environment, providing relative location information
about an event. The user would have the freedom to
attend to the event or not, depending on their own
holistic knowledge of the current environment.

Background and Related Work
Sound localization is a key aspect for this project. It is
a natural part of our living process and is usually taken
for granted. The importance of sound localization has
evolutionary roots. An important aspect of survival for
animals has always been to identify the location of
potential predators before it is too late, and most of the
times, this involves using their auditory system before
their visual system is able to perceive the threat [9].

Some studies have explored sound localization, but
most of them in static conditions, like the work of Liou
et al. [7], where they built the Cross-power Spectrum
Phase (CSP) method. This method localizes a sound as

an intersection of expected sound directions, using
different microphone arrangements. In particular, this
study used 3 microphones, each 30 cm apart. The
sound was amplified using amplifiers, signals were
captured and processed on a computer, and LabVIEW
software was used to display the signals for analysis.

Ho-Ching et al. [3] developed two visual display
prototypes for providing contextual awareness of non-
speech ambient sounds, such as a phone ringing and
knocking on a door, to deaf individuals, in a working
environment. The first prototype, the Spectrograph
display, provided information about amplitude and
pitch, whereas the second prototype, the Positional
Ripples display, provided information regarding the
amplitude and position of sound. Study results showed
that the Positional Ripples display provided better
visualization of sound with nearly 90% precision in the
laboratory setting, whereas the Spectrograph detected
ambient sounds with over 70% precision.

In another paper, KIM et al. [5] proposed an assistive
device for hearing-impaired individuals, to help notify
them of the direction of sudden loud sound
occurrences, out of sight, and in their surrounding
environment. The study consisted of three main
procedures – detecting the time frame along with the
onset of sound occurrences, reducing reflections in the
detected time frame, and estimating the direction. The
direction of the detected sudden loud sound was
visually displayed in terms of four angular regions –
front, back, left and right, with the help of four
directional microphones, directing towards the
corresponding angular regions, and using a modified
generalized linear constrained distortionless (LCMV)
beamformer. Output levels of the beamformer were

compared and the resulting corresponding region was
indicated using light-emitting diodes (LEDs).

Similarly, Gorman [2] designed a prototype – VisAural,
for hearing-impaired individuals, to detect the direction
of a sound event in their environment, and to notify
them with the help of light-emitting diodes (LEDs), thus
converting audio signals into visual cues. The prototype
consisted of a pair of eyeglasses, with a mounted array
of microphones for providing input, and LEDs fitted on
both, left and right sides of the eyeglasses for output.
Sound sampled every 0.2 seconds was checked to be
beyond the array’s noise threshold, and using a delay-
and-sum beamforming algorithm, the angle of potential
sound events was computed, from the set of selected
angles (15°, 30°, 45°, 60° and 90°), both, to the left
and right sides of the prototype. The resulting 10
signals were compared and the direction of the signal
with the largest gain was indicated using the LEDs.

Methods
Using a set of 3 microphones, arranged in order, to
cover the blind spots – left, right and back, with respect
to a user’s current position, the system is able to
capture significant changes in the sound composition of
the environment, visually providing relative location
information about a ‘sound event’, to the user.

Sound Capturing
Our prototype consists of a set of 3 USB microphones,
attached to a 4-port USB hub, and installed in a winter
hat. These microphones capture the sound in a user’s
current environment (Figure 1). Each microphone acts
as an independent input point, registering the
magnitude of the sound, as well as the time.

Figure 2: Processing and localization of a sound event. For
example, here, the sound is captured by the microphones mA
and mB; the system identifies that the sound was first
captured by mA (t1 < t2), so the position of mA is the closest
related to the source of the sound event.

Sound Processing and Localization
Once the magnitude of a sound is received through a
microphone, the system processes the information to
determine the range of noise – the threshold, using
which, any sound identified over the range is isolated
as a particular data point or sound event, and
evaluated. The evaluation of these isolated data points
is the process of interpreting them, in order to
communicate them to the user. A buffer is applied to
the threshold, in order to avoid sound magnitude which
is very close to the threshold, and which would be
considered as noise. Multiple microphones capture
sound, while the system determines the sound with the
highest magnitude, and registers the time of that
event. Here, time is fundamental to obtain the relative
location of the sound event. The first microphone to
receive the sound is the one closest to the event
(Figure 2).

Figure 1: Capturing of a sound
event. The winter hat, fitted with
a set of 3 microphones, captures
ambient sound.

Figure 3: Visualization of a sound event. Using Google Glass
as the output device, the system displays textual directional
cues.

Sound Visualization
After the processing phase is complete, the ‘sound
event’ is displayed on the output device – the Google
Glass. The representation of the sound event, as
captured by the microphone closest to it, is achieved
using textual directional cues to cover the left, right
and back surrounding areas, with respect to a user’s
current position (Figure 3).

Implementation

Hardware
The setup consists of 3 microphones connected to a
USB hub, mounted inside a winter hat (Figure 4). The
system gives a general direction of the source of sound
– left, right or back, with respect to a user’s current
position (Figure 5).

Initially, surrounding sound is captured using the
microphones for two seconds, which is then initialized

to calculate a threshold that can be used to
differentiate between the sound captured. A buffer of
10% is applied to the threshold, for testing purposes, in
order to avoid sound magnitude which is very close to
the threshold, and which would be considered as noise.

The system captures the surrounding noise in bursts of
30 s, for the next 10 s, wherein the data collected is
checked for possible sound events. Keeping the
threshold in check, the system then uses the next 2 s
to adjust itself and re-calculate the threshold, which
can be used for the next 10 s. This way, the threshold
is calculated every 10 s, in order to consider changes in
the user’s surrounding. In case of an event, values
from all three microphones is compared, and the
microphone with the highest magnitude is considered
to be the one facing the source of sound.

THRESHOLD CALCULATION AND SOUND EVENT
For each microphone, the surrounding sound recorded
for 2 s is broken down into 10 groups, where peaks
from every group are considered for calculating the
threshold. The mean of the peak values, thus obtained,
is considered to be the threshold for a particular
microphone. The process is repeated for the remaining
two microphones, and the final threshold value is
calculated, as the mean of the thresholds for all three
microphones. An event is considered, if and only if,
values from all 3 microphones break threshold for the
given time (Figures 6-7).

Software
Output of the MATLAB source code is stored in a JSON
file, which is updated every second. The JSON file is a
common resource between the MATLAB and JavaScript
source codes.

Figure 4: Our prototype with 3
USB mini-microphones, attached
to a 4-port USB hub.

Figure 5: Flowchart representing the implementation of the proposed system ‘Cherry’, integrated with Google Glass.

JavaScript reads data from a file and stores it in a
database. We are using the MongoDB database, as it
supports the JSON format, in contrast to the structural
SQL database. Once data is stored in the database, it is
sent to the browser through socket.io, and gets
uploaded on the webpage using the index.html file.

We are creating a web application using the MEAN
stack, which facilitates real-time transfer of data from
MATLAB to the browser. We are also using JSONlab,
which is a free and open-source toolbox, for

encoding/decoding JSON files in MATLAB. It can also be
used to convert a MATLAB data structure, such as
array, struct, cell, struct array and cell array, into a
JSON formatted string. Once the data has been
converted from MATLAB to JSON format, and is stored
in a file, we can read this file to obtain real-time
changes, independent of MATLAB.

When new data is received, a new instance of that
schema with the latest data is created and saved in the
database using the save() method.

Figure 6: Values below threshold, in case of an environment
where there is no external noise (here, it is all noise).	 The red,
green and pink signals are used to indicate the magnitude of
audio signals above threshold, plotted for visual purpose.

Figure 7: Detection of sound event, in case of multiple claps.

Algorithm

Identify microphones
Initialize microphones for recording
Loop 5 times (55 s worth total audio recording in this
loop)
{
 Threshold Calculation

{
 Record data from all three microphones for 2 s
 Plot recorded data
 Calculate threshold to be used for the next 10 s
of audio recorded data
 }
 Loop 20 times (10 s worth total audio recording in
this loop)
{
 Process microphone data
{
 Record data from all three microphones for
0.5 s
 Plot recorded data
 Identify events
 Classify them (high-medium-low)
 Estimate direction of sound
 {
 Compare magnitudes (data values) of
audio signal during an event
 Microphone with highest value is assigned
as the one facing the general direction of sound
 }
 }
 }
}

Resources

Hardware
We are using a set of 3 USB
mini-microphones attached to
a 4-port USB hub. Initially,
we tested the system with
two microphones, and later
added the remaining one
microphone. The hardware
specifications are as follows:

MICROPHONES

§ Bluetooth v2.0 and v1.2
compliant,

§ Supporting profiles:
Networking, Dial-up, Fax,
LAN Access and Headset,

§ USB Interface,

§ Size: 2.2 cm x 2 cm,

§ Symbol rate: 3.0 Mbps,

§ Range: 20 m,

§ Supported Operating
System: Windows 98,
98SE, ME, 2000 and XP.

HUB

§ USB 2.0,

§ 2′ USB A cable,

§ 4 USB A jacks.

Overcoming the Challenges
Coming up with a way to calculate threshold had been
an issue from the start. Initially, we calculated the
mean value of the sample signal, in order to calculate
the threshold. We found that the calculated threshold
value was very low, due to the presence of more values
on the lower side of the signal. We needed a threshold
value that would do justice to the environmental noise,
thereby eliminating most of the noise, for which the
threshold had to be defined on the higher side and
closer to the peaks.

We then came up with a method used in data mining,
wherein data is divided into groups and a value from
every group is selected, in order to understand the
sample. Thus, for our final setup, we selected peak
values from all the groups and calculated their mean, in
order to get the required threshold.

The primary challenges that we faced were to get
MATLAB to write data into the JSON file located on the
server, and to integrate the system with Google Glass.
Due to the limited Google Glass API documentation
available, and unsuccessful attempts of screen sharing
a laptop with Google Glass, we decided to load a
dynamic website on Google Glass.

For providing directional cues via Google Glass, we
created a public URL which could be accessed within
the same network. We used the localtunnel npm
module, in order to generate a unique URL, that could
be shared with anyone, as long as the local instance
remained active.

On the other hand, for integration with Google Glass,
we installed a QR Code scanning application on the

Glass, and scanned the QR Code, in order to navigate
to the particular URL.

Result
Successful implementation of the project includes
detecting an anomaly in surrounding sound, and
identifying its source. The system understands the
mobile nature of its user, that is, it is able to detect
changes in a user’s environment, and adapt evaluation
parameters to new context, with 70% accuracy. The
system dynamically re-evaluates the range of noise and
subsequently determines the new threshold. This
process of re-evaluation remains persistent, in order to
detect the variations in sound composition arising from
current environment changes (addition or subtraction
of sound events), or changes in the context (the user
moving from one place to another).

Future Work
For our future work, for sound visualization, we will try
to achieve the representation of sound events using
color-coding and frequency of blinks, wherein a ‘low’
sound event, barely above the threshold, will be
represented by green color and a low blinking
frequency; a ‘high’ sound event, significantly above the
threshold, will be represented by red color and a high
blinking frequency; and a ‘moderate’ sound event, in
the middle range of the threshold, will be represented
by yellow color and a moderate blinking frequency. The
relative localization of sound events on the Google
Glass will be represented using a set of physical
orientations – left area of the display for a sound
coming from the left, right area of the display for a
sound coming from the right, and bottom area of the
display for a sound coming from behind.

Resources

Software

MATLAB FUNCTIONS
§ audiodevinfo(IO, ID, Fs,

nBits, nChannels) – to get
information about an audio
device,

§ audiorecorder(Fs, nBits,
nChannels, ID) – to create
an object for recording
audio from an audio
source,

§ pause(n) – to stop MATLAB
execution temporarily,

§ getaudiodata(recorder,
dataType) – to store
recorded audio signal in a
numeric array,

§ figure(h) – to create a
figure window,

§ subplot(m, n, p) – to
create axes in tiled
positions,

§ plot(Y) – to create a 2-D
line plot, and

§ hold – to retain current
plot when adding new
plots.

JSONLAB FUNCTION
§ loadjson() – to convert a

JSON string into the
related MATLAB object.

References
1. Byrne D. and Noble W. 1998. Optimizing sound

localization with hearing aids. Trends in
Amplification, 3(2), 51-73.

2. Benjamin M. Gorman. 2014. VisAural: A Wearable
Sound-Localisation Device for People with Impaired
Hearing. In Proceedings of the 16th International
ACM SIGACCESS Conference on Computers and
Accessibility (ASSETS ’14), 337-338.
http://doi.acm.org/10.1145/2661334.2661410

3. F. Wai-ling Ho-Ching, Jennifer Mankoff and James
A. Landay. 2003. Can you see what I hear? The
Design and Evaluation of a Peripheral Sound
Display for the Deaf. In Proceedings of the SIGCHI
Conference on Human Factors in Computing
Systems (CHI ’03), 161-168.
http://doi.acm.org/10.1145/642611.642641

4. Larry E. Humes, Sylvia K. Allen and Fred H. Bess.
1980. Horizontal Sound Localization Skills of
Unilaterally Hearing-Impaired Children. Audiology
19: 508-518.

5. Ki-Won KIM, Jung-Woo CHOI and Yang-Hann KIM.
2014. Detection and direction estimation of a
sudden loud sound for the hearing assistive
eyeglasses. Inter-noise, 1-10.

6. Xiaofei Li, Miao Shen, Wenmin Wang and Hong Liu.
2012. Real-time Sound Source Localization for a
Mobile Robot Based on the Guided Spectral-
Temporal Position Method. International Journal of
Advanced Robotic Systems, Vol. 9, 1-8.

7. Jin Fu Liou, Kunal Joshi and Gaurang Vador. Real-
Time Sound Source Localization. Retrieved
February 5, 2016 from
http://s.eeweb.com/members/kunal_joshi/projects
/2011/03/13/EE586_Report-1300060274.pdf

8. Kazuhiro Nakadai, Hiroshi G. Okuno and Hiroaki
Kitano. 2002. Real-Time Sound Source Localization
and Separation for Robot Audition. In Proceedings

of the IEEE International Conference on Spoken
Language Processing (ICSLP ’02), 193–196.

9. William Noble, Shaune Sinclair and Denis Byrne.
1998. Improvement in Aided Sound Localization
with Open Earmolds: Observations in People with
High-Frequency Hearing Loss. Journal of the
American Academy of Audiology, Vol. 9, 25-34.

10. Jeffrey Powers. 2013. Use Multiple USB
Microphones to Record [How to]. Retrieved
February 27, 2016 from
http://howtorecordpodcasts.com/multiple-usb-
microphones-record-how-to/

11. Glass, Google Developers. 2015. Reference.
Retrieved March 11, 2016 from
https://developers.google.com/glass/develop/gdk/r
eference/

12. MathWorks. 2016. Live Direction of Arrival
Estimation with a Linear Microphone Array.
Retrieved February 7, 2016 from
http://www.mathworks.com/help/audio/examples/l
ive-direction-of-arrival-estimation-with-a-linear-
microphone-
array.html;jsessionid=0dbebf59bbc267cdcfc7c7cfa
b4e?s_tid=gn_loc_drop

13. MathWorks. 2016. Connect to FTP server. MATLAB.
Retrieved April 14, 2016 from
http://www.mathworks.com/help/matlab/ref/ftp-
class.html

14. Aishwarya Singh, Alan Lambie, Hrishikesh Karale,
Piyush Chauhan and Tanmay Mahesh Songade.
2016. Cherry: Sound Localization for the Deaf or
Hard-of-hearing. HCIN-722 Human-Computer
Interaction with Mobile Devices, Rochester Institute
of Technology, Rochester, NY, USA.
https://github.com/SongTanmay/sound-
localization-visualization

