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Abstract 
Deaf people by definition are people who do not hear 
well and cannot rely on their hearing abilities to interact 
with the environment. Unlike hearing people, they 
generally need to be made aware of the events 
occurring in their environment, such as a fire, someone 
trying to call them by phone or in person, a child 
crying, an approaching car, and so on, in their homes 
or workplaces. A significant amount of research efforts 
in assistive technology have explored these contexts for 
deaf people, looking for specific solutions. This project 
intends to build a system that is able to provide deaf 
people with subtle alarms of the events taking place in 
their environments, while they are in a mobile context. 

Author Keywords 
Sound capturing; sound processing; sound localization; 
sound visualization.  

ACM Classification Keywords 
H.5.m. Information interfaces and presentation (e.g., 
HCI): Miscellaneous. 

Introduction 
The human brain is highly perspicacious when it comes 
to hearing – the cocktail party effect being the perfect 
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example of this, wherein a hearing person is able to 
focus their attention on a particular auditory stimulus 
while straining out the rest. This project seeks to 
contribute to the deaf and hard-of-hearing people, by 
creating a system which is able to replicate a virtual 
cocktail party effect of sorts. 

Our prototype attempts to develop a system, which 
while relying on sound, would detect different events 
occurring in the environment. It intends to augment the 
awareness of deaf people with visualization techniques, 
providing them with enough information to be able to 
act and react to the events. Using a set of 3 
microphones, arranged in order, to cover the left, right 
and back surrounding areas with respect to a user’s 
current position, the system would be able to capture 
significant changes in the sound composition of the 
environment, providing relative location information 
about an event. The user would have the freedom to 
attend to the event or not, depending on their own 
holistic knowledge of the current environment. 

Background and Related Work 
Sound localization is a key aspect for this project. It is 
a natural part of our living process and is usually taken 
for granted. The importance of sound localization has 
evolutionary roots. An important aspect of survival for 
animals has always been to identify the location of 
potential predators before it is too late, and most of the 
times, this involves using their auditory system before 
their visual system is able to perceive the threat [9]. 

Some studies have explored sound localization, but 
most of them in static conditions, like the work of Liou 
et al. [7], where they built the Cross-power Spectrum 
Phase (CSP) method. This method localizes a sound as 

an intersection of expected sound directions, using 
different microphone arrangements. In particular, this 
study used 3 microphones, each 30 cm apart. The 
sound was amplified using amplifiers, signals were 
captured and processed on a computer, and LabVIEW 
software was used to display the signals for analysis.  

Ho-Ching et al. [3] developed two visual display 
prototypes for providing contextual awareness of non-
speech ambient sounds, such as a phone ringing and 
knocking on a door, to deaf individuals, in a working 
environment. The first prototype, the Spectrograph 
display, provided information about amplitude and 
pitch, whereas the second prototype, the Positional 
Ripples display, provided information regarding the 
amplitude and position of sound. Study results showed 
that the Positional Ripples display provided better 
visualization of sound with nearly 90% precision in the 
laboratory setting, whereas the Spectrograph detected 
ambient sounds with over 70% precision. 

In another paper, KIM et al. [5] proposed an assistive 
device for hearing-impaired individuals, to help notify 
them of the direction of sudden loud sound 
occurrences, out of sight, and in their surrounding 
environment. The study consisted of three main 
procedures – detecting the time frame along with the 
onset of sound occurrences, reducing reflections in the 
detected time frame, and estimating the direction. The 
direction of the detected sudden loud sound was 
visually displayed in terms of four angular regions – 
front, back, left and right, with the help of four 
directional microphones, directing towards the 
corresponding angular regions, and using a modified 
generalized linear constrained distortionless (LCMV) 
beamformer. Output levels of the beamformer were 



  

compared and the resulting corresponding region was 
indicated using light-emitting diodes (LEDs).  

Similarly, Gorman [2] designed a prototype – VisAural, 
for hearing-impaired individuals, to detect the direction 
of a sound event in their environment, and to notify 
them with the help of light-emitting diodes (LEDs), thus 
converting audio signals into visual cues. The prototype 
consisted of a pair of eyeglasses, with a mounted array 
of microphones for providing input, and LEDs fitted on 
both, left and right sides of the eyeglasses for output. 
Sound sampled every 0.2 seconds was checked to be 
beyond the array’s noise threshold, and using a delay-
and-sum beamforming algorithm, the angle of potential 
sound events was computed, from the set of selected 
angles (15°, 30°, 45°, 60° and 90°), both, to the left 
and right sides of the prototype. The resulting 10 
signals were compared and the direction of the signal 
with the largest gain was indicated using the LEDs.  

Methods 
Using a set of 3 microphones, arranged in order, to 
cover the blind spots – left, right and back, with respect 
to a user’s current position, the system is able to 
capture significant changes in the sound composition of 
the environment, visually providing relative location 
information about a ‘sound event’, to the user. 

Sound Capturing 
Our prototype consists of a set of 3 USB microphones, 
attached to a 4-port USB hub, and installed in a winter 
hat. These microphones capture the sound in a user’s 
current environment (Figure 1). Each microphone acts 
as an independent input point, registering the 
magnitude of the sound, as well as the time. 

 
Figure 2: Processing and localization of a sound event. For 
example, here, the sound is captured by the microphones mA 
and mB; the system identifies that the sound was first 
captured by mA (t1 < t2), so the position of mA is the closest 
related to the source of the sound event. 

Sound Processing and Localization 
Once the magnitude of a sound is received through a 
microphone, the system processes the information to 
determine the range of noise – the threshold, using 
which, any sound identified over the range is isolated 
as a particular data point or sound event, and 
evaluated. The evaluation of these isolated data points 
is the process of interpreting them, in order to 
communicate them to the user. A buffer is applied to 
the threshold, in order to avoid sound magnitude which 
is very close to the threshold, and which would be 
considered as noise. Multiple microphones capture 
sound, while the system determines the sound with the 
highest magnitude, and registers the time of that 
event. Here, time is fundamental to obtain the relative 
location of the sound event. The first microphone to 
receive the sound is the one closest to the event 
(Figure 2). 

 
Figure 1: Capturing of a sound 
event. The winter hat, fitted with 
a set of 3 microphones, captures 
ambient sound. 

 

 



  

 
Figure 3: Visualization of a sound event. Using Google Glass 
as the output device, the system displays textual directional 
cues. 

Sound Visualization 
After the processing phase is complete, the ‘sound 
event’ is displayed on the output device – the Google 
Glass. The representation of the sound event, as 
captured by the microphone closest to it, is achieved 
using textual directional cues to cover the left, right 
and back surrounding areas, with respect to a user’s 
current position (Figure 3). 

Implementation 

Hardware 
The setup consists of 3 microphones connected to a 
USB hub, mounted inside a winter hat (Figure 4). The 
system gives a general direction of the source of sound 
– left, right or back, with respect to a user’s current 
position (Figure 5). 

Initially, surrounding sound is captured using the 
microphones for two seconds, which is then initialized 

to calculate a threshold that can be used to 
differentiate between the sound captured. A buffer of 
10% is applied to the threshold, for testing purposes, in 
order to avoid sound magnitude which is very close to 
the threshold, and which would be considered as noise. 

The system captures the surrounding noise in bursts of 
30 s, for the next 10 s, wherein the data collected is 
checked for possible sound events. Keeping the 
threshold in check, the system then uses the next 2 s 
to adjust itself and re-calculate the threshold, which 
can be used for the next 10 s. This way, the threshold 
is calculated every 10 s, in order to consider changes in 
the user’s surrounding. In case of an event, values 
from all three microphones is compared, and the 
microphone with the highest magnitude is considered 
to be the one facing the source of sound. 

THRESHOLD CALCULATION AND SOUND EVENT 
For each microphone, the surrounding sound recorded 
for 2 s is broken down into 10 groups, where peaks 
from every group are considered for calculating the 
threshold. The mean of the peak values, thus obtained, 
is considered to be the threshold for a particular 
microphone. The process is repeated for the remaining 
two microphones, and the final threshold value is 
calculated, as the mean of the thresholds for all three 
microphones. An event is considered, if and only if, 
values from all 3 microphones break threshold for the 
given time (Figures 6-7). 

Software 
Output of the MATLAB source code is stored in a JSON 
file, which is updated every second. The JSON file is a 
common resource between the MATLAB and JavaScript 
source codes.  

 
Figure 4: Our prototype with 3 
USB mini-microphones, attached 
to a 4-port USB hub. 

 

 



  

 
Figure 5: Flowchart representing the implementation of the proposed system ‘Cherry’, integrated with Google Glass.

JavaScript reads data from a file and stores it in a 
database. We are using the MongoDB database, as it 
supports the JSON format, in contrast to the structural 
SQL database. Once data is stored in the database, it is 
sent to the browser through socket.io, and gets 
uploaded on the webpage using the index.html file. 

We are creating a web application using the MEAN 
stack, which facilitates real-time transfer of data from 
MATLAB to the browser. We are also using JSONlab, 
which is a free and open-source toolbox, for 

encoding/decoding JSON files in MATLAB. It can also be 
used to convert a MATLAB data structure, such as 
array, struct, cell, struct array and cell array, into a 
JSON formatted string. Once the data has been 
converted from MATLAB to JSON format, and is stored 
in a file, we can read this file to obtain real-time 
changes, independent of MATLAB.  

When new data is received, a new instance of that 
schema with the latest data is created and saved in the 
database using the save() method.  



 

 
Figure 6: Values below threshold, in case of an environment 
where there is no external noise (here, it is all noise).	  The red, 
green and pink signals are used to indicate the magnitude of 
audio signals above threshold, plotted for visual purpose. 

 
Figure 7: Detection of sound event, in case of multiple claps. 

Algorithm 

Identify microphones 
Initialize microphones for recording 
Loop 5 times (55 s worth total audio recording in this 
loop) 
{ 
     Threshold Calculation 

{ 
          Record data from all three microphones for 2 s 
          Plot recorded data 
          Calculate threshold to be used for the next 10 s 
of audio recorded data 
     } 
     Loop 20 times (10 s worth total audio recording in 
this loop) 
{ 
          Process microphone data 
{      
               Record data from all three microphones for 
0.5 s 
               Plot recorded data 
               Identify events 
               Classify them (high-medium-low)                             
               Estimate direction of sound 
               { 
                    Compare magnitudes (data values) of 
audio signal during an event 
                    Microphone with highest value is assigned 
as the one facing the general direction of sound 
               } 
          } 
     } 
} 

Resources 

Hardware  
We are using a set of 3 USB 
mini-microphones attached to 
a 4-port USB hub. Initially, 
we tested the system with 
two microphones, and later 
added the remaining one 
microphone. The hardware 
specifications are as follows:  

MICROPHONES 

§ Bluetooth v2.0 and v1.2 
compliant, 

§ Supporting profiles: 
Networking, Dial-up, Fax, 
LAN Access and Headset, 

§ USB Interface, 

§ Size: 2.2 cm x 2 cm, 

§ Symbol rate: 3.0 Mbps, 

§ Range: 20 m, 

§ Supported Operating 
System: Windows 98, 
98SE, ME, 2000 and XP. 

HUB 

§ USB 2.0, 

§ 2′ USB A cable, 

§ 4 USB A jacks. 

 



 

Overcoming the Challenges 
Coming up with a way to calculate threshold had been 
an issue from the start. Initially, we calculated the 
mean value of the sample signal, in order to calculate 
the threshold. We found that the calculated threshold 
value was very low, due to the presence of more values 
on the lower side of the signal. We needed a threshold 
value that would do justice to the environmental noise, 
thereby eliminating most of the noise, for which the 
threshold had to be defined on the higher side and 
closer to the peaks. 

We then came up with a method used in data mining, 
wherein data is divided into groups and a value from 
every group is selected, in order to understand the 
sample. Thus, for our final setup, we selected peak 
values from all the groups and calculated their mean, in 
order to get the required threshold. 

The primary challenges that we faced were to get 
MATLAB to write data into the JSON file located on the 
server, and to integrate the system with Google Glass. 
Due to the limited Google Glass API documentation 
available, and unsuccessful attempts of screen sharing 
a laptop with Google Glass, we decided to load a 
dynamic website on Google Glass. 

For providing directional cues via Google Glass, we 
created a public URL which could be accessed within 
the same network. We used the localtunnel npm 
module, in order to generate a unique URL, that could 
be shared with anyone, as long as the local instance 
remained active.  

On the other hand, for integration with Google Glass, 
we installed a QR Code scanning application on the 

Glass, and scanned the QR Code, in order to navigate 
to the particular URL. 

Result 
Successful implementation of the project includes 
detecting an anomaly in surrounding sound, and 
identifying its source. The system understands the 
mobile nature of its user, that is, it is able to detect 
changes in a user’s environment, and adapt evaluation 
parameters to new context, with 70% accuracy. The 
system dynamically re-evaluates the range of noise and 
subsequently determines the new threshold. This 
process of re-evaluation remains persistent, in order to 
detect the variations in sound composition arising from 
current environment changes (addition or subtraction 
of sound events), or changes in the context (the user 
moving from one place to another). 

Future Work 
For our future work, for sound visualization, we will try 
to achieve the representation of sound events using 
color-coding and frequency of blinks, wherein a ‘low’ 
sound event, barely above the threshold, will be 
represented by green color and a low blinking 
frequency; a ‘high’ sound event, significantly above the 
threshold, will be represented by red color and a high 
blinking frequency; and a ‘moderate’ sound event, in 
the middle range of the threshold, will be represented 
by yellow color and a moderate blinking frequency. The 
relative localization of sound events on the Google 
Glass will be represented using a set of physical 
orientations – left area of the display for a sound 
coming from the left, right area of the display for a 
sound coming from the right, and bottom area of the 
display for a sound coming from behind. 

Resources 

Software  

MATLAB FUNCTIONS 
§ audiodevinfo(IO, ID, Fs, 

nBits, nChannels) – to get 
information about an audio 
device, 

§ audiorecorder(Fs, nBits, 
nChannels, ID) – to create 
an object for recording 
audio from an audio 
source, 

§ pause(n) – to stop MATLAB 
execution temporarily, 

§ getaudiodata(recorder, 
dataType) – to store 
recorded audio signal in a 
numeric array, 

§ figure(h) – to create a 
figure window, 

§ subplot(m, n, p) – to 
create axes in tiled 
positions, 

§ plot(Y) – to create a 2-D 
line plot, and 

§ hold – to retain current 
plot when adding new 
plots.  

JSONLAB FUNCTION 
§ loadjson() – to convert a 

JSON string into the 
related MATLAB object. 
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